

INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE RADES

Département Sciences économiques et Gestion

CORRIGE DE TD N° 4

MATIERE: Contrôle de gestion TD N°:

NIVEAU: L 3 THEME: La budgétisation des

ENSEIGNANT: Y. ABASSI approvisionnements

EXERCICE N° 1 :

Libellés	Numéro	Nombre	Valeur	Valeur cumulée	Valeur
		cumulé en%			cumulée en %
Н	1	10	58 820	58 820	58.82
\mathbf{P}_1	2	20	27 180	86 000	86
D_3	3	30	3 000	89 000	89
X_2	4	40	3 000	92 000	92
D_1	5	50	2 500	94 500	94.5
P_2	6	60	2 500	97 000	97
D_2	7	70	1 200	98 200	98.2
M	8	80	800	99 000	99
X_1	9	90	500	99 500	99.5
X_3	10	100	500	100 000	100

On constate que la courbe ABC et vérifié puisque les matières H et P₁ représentent 20% du nombre cumulé et plus que 80% de la valeur cumulé.

2) Pour
$$P_1$$
: $C = 125\,000$, $f = 40$, $t = 0.2$, $P=15$, DL entre 4 et 13 jours.

D'où: Q* =
$$\sqrt{\frac{2xCf}{tP}}$$
 = $\sqrt{\frac{2x125000x40}{0.2x15}}$ = 1825.74 \(\text{\text{\text{2}}} 1826

Le délai de livraison varie entre 4 et 13 jours d'où l'aléa de délai est de 9 jours et le stock de sécurité doit couvrir une consommation de 9 jours, soit

Le délai de livraison certain (4 jours) d'où :

Stock d'alerte = [(délai de livraison certain) x (consommation journalière)] + SS $= [(125\ 000/360)\ x4] + 3125 = 4513.88 \approx 4516\ unités.$

$$C = 224,000 \text{ f} = 40 \text{ f} = 0.1 \text{ D} = 20 \text{ DI} = 2 \text{ forms}$$

- Pour H:
$$C = 324\ 000$$
, $f = 40$, $t = 0.1$, $P=20$, $DL = 2$ jours.

D'où:
$$Q^* = \sqrt{\frac{2xCf}{tP}} = \sqrt{\frac{2x324000x40}{0.1x20}} = 3600$$

Le délai de livraison est certain ⇒ SS=0 d'où :

Stock d'alerte = [(délai de livraison certain) x (consommation journalière)] + SS $= [(324\ 000/360)\ x2] + 0 = 1800\ unités.$

EXERCICE N° 2:

1) Le cout de passation f est de $20 + 5 + 100 = 125\,$ DT, alors que le taux de possession t est de $10\% + 15\% = 25\%\,$ d'où la quantité économique à commander est :

$$Q = \sqrt{\frac{2xCxf}{txP}} = \sqrt{\frac{2x3200x125}{0.25x20}} = 400$$

Par conséquent le nombre optimal des commandes est : $N^*=C/Q^*=3200/400=8$. Selon la méthode P la période séparant deux commandes successives est constante alors que les quantités à commandes varient. Puisque les commandes s'étalent sur une année cette période en jours est de $P^*=360/N^*=360/8=45$ jours, soit une commande tous les 1 mois et demi. Puisque le stock initial est de 350 unités et la consommation de janvier est de 200 et celle de février est de 300, la première rupture interviendra au 16/2. Il est nécessaire pour respecter la marge de sécurité de 15 jours de consommation, de prévoir une livraison au 1/2, puis des livraisons de 1 mois et demi en 1 mois et demi, soit respectivement Le 16/3, le 1/5, le 16/6, le 1/8, le 16/9, le 1/10 et le 16/12.

Pour ce qui est de quantités à commander, elles doivent couvrir les consommations de un mois, et demi suivant la dates des ruptures, soient respectivement ;

$$\begin{array}{lll} 550 = & 1/2 \ C_F + C_{M,} = 150 + 400; & 320 = \ C_A + \ 1/2 C_M = 240 + 80; \\ 380 = & 1/2 C_M + C_{juin} = 80 + 300; & 650 = C_{Juillet} + \ 1/2 \ C_A = 400 + 250; \\ 510 = & 1/2 C_A + C_S = 250 + 260; & 190 = C_O + \ 1/2 C_{N.} = 140 + 50; \\ 250 = & 1/2 C_N + C_D = 50 + 200: & X + 1/2 \ Y = C_{Jn+1} + \ 1/2 \ C_{Fn+1} \\ (X \ \text{\'etant la consommation de Janvier N+1, et Y celle de F\'evrier N+1)}. \end{array}$$

Le programme des commandes livraison et consommation se présente alors comme suit :

Mois	Dec N-1	J	F	M	A	M	J	J	A	S	О	N	D
Consommation		200	300	400	240	160	300	400	500	260	140	100	200
Date de commande		16		1	16		1	16		1	16		1
Date de livraison			1	16		1	16		1	16		1	16
Quantités à		550		320	380		650	510		190	250	X+1/2Y	
commander													
Entrées (Livraison)			550	320		380	650		510	190		250	X+Y/2
Stock final	350	150	400	320	80	300	650	250	260	190	50	200	X+Y/2

FRAIS	BUDGET
- frais de passation :	
-Frais administratif	$20 \times 8 = 160$
- Frais postaux :	5x8=40
- frais de transport : $100 \times 8 = 800$	100x8 = 800
-frais de possession:	
- Frais financiers	$\frac{350+X+\frac{Y}{2}}{2}$ x0.1x20
- Frais de stockage physique	$\frac{350 + X + Y/2}{2} \times 0.15 \times 20$
TOTAL	$1000+2.5x\frac{350+X+Y/2}{2}$

3) Le programme des commandes et des livraisons selon la méthode Q repose sur la même quantité économique à commander et le nombre de commande que la méthode $P: Q^* = 400$ et $N^* = 8$. Toutefois cette méthode consiste à prévoir des livraisons à des quantités constantes $Q^* = 640$ chaque fois que le stock existant ne satisfait plus la condition de stock de sécurité alors que les périodes séparant les commandes varient. Le planning des commandes se présentent alors comme suit :

Janvier : le stock initial étant de 350 moins les consommations du mois, donc un stock final de 150 ce qui satisfait la consommation des quinze jours suivants.

Février : Puisque le stock initial est 150 et la consommation de février est de 300, la rupture se produit le 16/2 si aucune commandes n'est reçu, étant donné que le stock de sécurité est de 15 jours il convient de prévoir une livraison de 400, 15 jours avant la date de rupture soit le 1/2. Avec cette livraison le stock final sera 250 au lieu d'un stock avec rupture de -150.

Mars : le stock initial de 250 qui s'épuise le 18/3 car: (250/400) x 30 = 18.75 et la rupture se produit le 19/3 d'où la nécessité d'avoir une livraison de 400 quinze jours auparavant (le 4/3), avec cette livraison le stock final sera de 250 au lieu d'un stock avec rupture de -150.

Avril : le stock initial étant de 250 moins les consommations du mois, donc un stock final de 10 ce qui ne satisfait pas la consommation des quinze jours suivants. Puisque la consommation de Mai est de 410, la rupture se produit le 2/5 : (10/160) x 30 = 1.875 jours d'où la nécessité d'avoir une livraison de 400 un mois auparavant (le 17/4). Avec cette livraison le stock final advient 410.

Mai: le stock initial étant de 410 moins la consommation du mois, donc un stock final de 250 ce qui satisfait la consommation des quinze jours suivants.

Juin : le stock initial de 250 la rupture aura lieu le 26/6 puisque (250/300) x 30 = 25 jours d'où la nécessité d'avoir une livraison de 400 quinze jours auparavant (le 11/6) avec cette livraison le stock final sera de 350 au lieu d'un stock avec rupture de -50.

Juillet : le stock initial de 350 s'épuise le 26/7, (350/400)x 30 = 26.25 la rupture est prévue le 27/7 d'où la nécessité d'avoir une livraison de 400 quinze jours auparavant (le 12/7) avec cette livraison le stock final sera de 350 au lieu d'un stock avec rupture de - 50.

Aout: le stock initial de 350 s'épuise le 21/8, (350/500)x 30 = 21 jours la rupture est prévue le 22/8 d'où la nécessité d'avoir une livraison de 400 quinze jours auparavant (le 7/8). Avec cette livraison le stock final sera de 250.

Septembre: le stock initial de 250 s'épuise le 28/9, (250/260) x 30 = 28.84 le rupture se produit le 29/9, d'où la nécessité d'avoir une livraison de 400 quinze jours auparavant (le 14/9). Avec cette livraison le stock final sera de 390 au lieu d'un stock avec rupture de - 10.

Octobre : le stock initial étant de 390 moins la consommation du mois, donc un stock final de 250 ce qui satisfait la consommation des quinze jours suivants.

Novembre: le stock initial étant de 250 moins la consommation du mois, donc un stock final de 150 ce qui satisfait la consommation des quinze jours suivants.

Décembre : le stock initial de 150 s'épuise le 22/12 (150/200) x 30 = 22.5 la rupture se produit le 23/12 d'où la nécessité d'avoir une livraison de 400 quinze jours auparavant (le 8/12). Avec cette livraison le stock final sera de 350 au lieu d'un stock avec rupture de -50. Ainsi le programme des commandes se présente ainsi :

Mois	J	F	M	Α	M	J	J	A	S	O	N	D
SI	350	150	250	250	410	250	350	350	250	390	250	150
С	200	300	400	240	160	300	400	500	260	140	100	200
Date de rupture		16	19		2	26	27	22	29			23
Date de livraison		1	4	17		11	12	7	14			8
Date de commande	16	19		2	26	27	22	29			23	
Livraison		400	400	400		400	400	400	400			400
SF	150	-150	-150	10	250	-50	-50	-150	-10	250	150	-50
SF rectifié	150	250	250	410	250	350	350	250	390	250	150	350

EXERCICE N° 3:

1) a- Le cout de passation f est de 24 + 15 = 40 DT, alors que le taux de possession t est de 10 % + 10% + 5% = 25% d'où la quantité économique à commander est :

$$Q^* = \sqrt{\frac{2xCf}{tP}} = \sqrt{\frac{2x5120x40}{0.25x4}} = 640$$

Par conséquent le nombre optimal des commandes est : $N^*=C/Q^*=5120/640=8$. Selon la méthode P la période séparant deux commandes successives est constante alors que les quantités à commandes varient. Puisque les commandes s'étalent sur une année cette période en jours est de $P^*=360/N^*=360/8=45$ jours, soit une commande tous les 1 mois et demi.

Puisque le stock initial est de 460 unités et la consommation de janvier est de 300, la première rupture interviendra au 16/2. Il est nécessaire pour respecter la marge de sécurité d'un mois de consommation, de prévoir une livraison au 16/1 janvier, puis des livraisons de 1 mois et demi en 1 mois et demi, soit respectivement Le 1/3, le 16/4, le 1/6, le 16/7, le 1/9, le 16/10 et le 1/12. Pour ce qui est de quantités à commander, elles doivent couvrir les consommations de un mois, et demi suivant les dates des ruptures, soient respectivement :

$$\begin{array}{lll} 560 = & 1/2 \ C_F + C_M, = 150 + 400; & 800 = C_A + 1/2 C_M = 500 + 300; \\ 600 = & 1/2 C_M + C_{juin} = 300 + 300; & 600 = C_{Juillet} + 1/2 \ C_A = 300 + 300; \\ 900 = & 1/2 C_A + C_S = 300 + 600; & 850 = C_O + 1/2 C_{N.} = 700 + 150; \\ 350 = & 1/2 C_N + C_D = 150 + 200: & X + 1/2 \ Y = C_{Jn+1} + \frac{1}{2} \ C_{Fn+1} \\ (X \ \text{étant la consommation de Janvier N+1, et Y celle de Février N+1).} \end{array}$$

Le programme des commandes livraison et consommation se présente alors comme suit :

Mois	Dec N-1	J	F	M	A	M	J	J	A	S	О	N	D
Consommation		300	320	400	500	600	300	300	600	600	700	300	200
Date de commande		1	16		1	16		1	16		1	16	
Date de livraison		16		1	16		1	16		1	16		1
Quantités à		560	800		600	600		900	850		350	X+1/2Y	
commander													
Entrées (Livraison)		560		800	600		600	900		850	350		X+1/2Y
Stock final	460	720	400	800	900	300	600	1200	600	850	500	200	X+1/2Y

b) **Avantages :** Elle permet d'organiser et de planifier à l'avance le travail administratif lié à la passation des commandes et à la réception des commandes, et de regrouper éventuellement les commandes de plusieurs articles différents à une même date ce qui permet de réaliser des économies sur les frais de livraison et de profiter de réductions de prix d'achat.

Elle ne nécessite pas un suivi permanent des stocks.

Elle est appréciée par les fournisseurs qui préfèrent connaître à l'avance le programme des commandes

Elle est adaptée aux produits périssables.

Inconvénients : En cas d'erreurs de prévision il y a des risques de pénuries de stock ou de sur-stockage qui engendrent une hausse des coûts ou un manque à gagner sur les ventes.

c)

MOIS	COMMANDE N°	BUDGET
1/ Janvier	1	560x4=2240
16/ Février	2	800x4=3200
1/ Avril	3	600x4=2400
16/ Mai	4	600x4=2400
1/ Juillet	5	900x4=3600
16/ Août	6	850x4=3400
1/Octobre	7	350x4=1400
16/ Novembre	8	$(X+Y/2) \times 4$
Total		18640 + 4 (X+Y/2)

2)

a- Le programme des commandes et des livraisons selon la méthode Q repose sur la même quantité économique à commander et le nombre de commande que la méthode $P: Q^* = 640$ et $N^* = 8$. Toutefois cette méthode consiste à prévoir des livraisons à des quantités constantes $Q^* = 640$ chaque fois que le stock existant ne satisfait plus la condition de stock de sécurité alors que les périodes séparant les commandes varient. Le planning des commandes se présentent alors comme suit :

Janvier: le stock initial étant de 460 moins les consommations du mois, donc un stock final de 160 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation de février est de 320, la rupture intervient le 16/2 : (160/320)x 30 = 15 jours d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 16/1). Avec cette livraison le stock final de janvier advient 800.

Février : le stock initial étant de 800 moins les consommations du mois, donc un stock final de 480 qui satisfait la consommation du mois suivant qui est de 400.

Mars : le stock initial étant de 480 moins les consommations du mois, donc un stock final de 80 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation d'avril est de 500, la rupture se produit le 5/4 : (80/500) x 30 = 4.8 d'où la nécessité d'avoir

une livraison de 640 un mois auparavant (le 5/3). Avec cette livraison le stock final advient 720.

Avril : le stock initial étant de 720 moins les consommations du mois, donc un stock final de 220 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation de Mai est de 600, la rupture se produit le 12/5 : (220/600) x 30 = 11 jours d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 12/4). Avec cette livraison le stock final advient 860.

Mai: le stock initial étant de 860 moins les consommations du mois, donc un stock final de 260 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation de Juin est de 300, la rupture se produit le 27/6: (260/300) x 30 = 26 jours d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 27/5). Avec cette livraison le stock final advient 900.

Juin : le stock initial étant de 900 moins les consommations du mois, donc un stock final de 600 qui satisfait la consommation du mois suivant qui est de 300.

Juillet : le stock initial étant de 600 moins les consommations du mois, donc un stock final de 300 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation d'aout est de 600, la rupture se produit le 16/8 : (300/600) x 30 = 15 jours d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 16/7). Avec cette livraison le stock final advient 940.

Aout: le stock initial étant de 940 moins les consommations du mois, donc un stock final de 340 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation de septembre est de 600, la rupture se produit le 18/9 : (340/600) x 30 = 17 jours, d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 18/8). Avec cette livraison le stock final advient 980.

Septembre: le stock initial étant de 980 moins les consommations du mois, donc un stock final de 380 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation d'octobre est de 700, la rupture se produit le 17/10: (380/700) x 30 = 16.28 d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 17/9). Avec cette livraison le stock final advient 1020.

Octobre : le stock initial étant de 1020 moins les consommations du mois, donc un stock final de 320 qui satisfait la consommation du mois suivant qui est de 300.

Novembre: le stock initial étant de 320 moins les consommations du mois, donc un stock final de 20 ce qui ne satisfait pas la consommation du mois suivant. Puisque la consommation de décembre est de 200, la rupture se produit le 4/12 : (20/200) x 30 = 3 jours d'où la nécessité d'avoir une livraison de 640 un mois auparavant (le 4/11). Avec cette livraison le stock final advient 660.

Décembre : le stock initial étant de 660 moins les consommations du mois, donc un stock final de 460.

Ainsi le programme des commandes se présente ainsi :

Mois	J	F	M	A	M	J	J	Α	S	0	N	D
SI	460	800	480	720	860	900	600	940	980	1020	320	660
C	300	320	400	500	600	300	300	600	600	700	300	200
Date de rupture		16		5	12	27		16	18	17		4
Date de livraison	16		5	12	27		16	18	17		4	
Date de commande	1	20	27		12		1	3	2	19		
Livraison	640		640	640	640		640	640	640		640	
SF	160	480	80	220	260	600	300	340	380	320	20	460
SF rectifié	800	480	720	860	900	600	940	980	1020	320	660	460

b) Avantages : Elle permet d'optimiser les ressources affectées aux approvisionnements (entrepôts, matériel de transport ...). Elle est adaptée aux matières volumineuses ou trop cher ou celles dont la commande ne peut être fractionnée suite à causes de contraintes liées aux fournisseurs ou à leur conditionnement et aux matières dont la demande est très irrégulières ce qui permet d'éviter un sur-stockage ou des pénuries importantes.

Inconvénients : Elle nécessite un suivi permanent des stocks. Elle et entraine souvent des problèmes avec les fournisseurs qui n'arrivent pas souvent à satisfaire les commande non prévues de l'entreprise.

c)- Budget des achats :

MOIS	COMMANDE N°	BUDGET
1/ Janvier	1	640x4=2560
20/ Février	2	640x4=2560
27/Mars	3	640x4=2560
12/Mai	4	640x4=2560
1/Juillet	5	640x4=2560
3/Août	6	640x4=2560
2/Septembre	7	640x4=2560
19/Octobre	8	640x4=2560
Total		5120x4=20 480

- Budget des frais d'approvisionnements :

FRAIS	BUDGET
- frais de passation :	$25 \times 8 = 200$
-Frais administratif	$15 \times 8 = 120$
- Frais postaux	
-frais de possession:	
- Frais financiers	$4 \times 0.1 \times \frac{640}{2} = 128$
- Frais de stockage physique	$4 \times 0.1 \times \frac{640}{2} = 128$
- Frais d'assurance	$4 \times 0.05 \times \frac{640}{2} = 64$
TOTAL	640

d)

		ECARTS		•	
ENTR	REES	SOR	TIES	ETAT DE	STOCK
Date	Quantité	Date	Quantité	Date	Quantité
1/1/N	0	1/1/N	0	1/1/N	0
1/2/N	-	1/2/N	80	1/2/N	-80
1/3/N	0	1/3/N	100	1/3/N	-180

Il convient de déclencher des commandes exceptionnelles de 180 pour combler l'écart ou avancer la date de la prochaine commande ou accroître la prochaine quantité à commander (820 = 640 + 180) au lieu de 640)